Behavioral and neuropathological changes in animal models of chronic painful scar

نویسندگان

  • Yukihiro Kajita
  • Katsutoshi Suetomi
  • Teruhiko Okada
  • Masahiko Ikeuchi
  • Young-Chang P. Arai
  • Keiji Sato
  • Takahiro Ushida
چکیده

BACKGROUND Long-lasting limb pain or back pain after surgery occasionally develops into chronic pain that leads to lower activity and a poorer quality of life for many patients. To determine the histopathological and neuropathological mechanisms that cause persistent post-operative pain, we developed an original animal model with sustained painful scars and then examined pain-related behavior and the pathological alteration of peripheral tissues and spinal nerves associated with the model. METHODS The animal model (Scar group) was prepared in rats by extensively stripping subcutaneous tissue from the plantar in the hind paw followed by subsequent examination of pain-related behavior over the next 12 weeks. Thereafter, we conducted histological staining of the scar tissues, immunohistochemical staining of c-Fos (L5 dorsal horn), and electron microscopic analysis of the L5 spinal nerve fibers/dorsal roots. RESULTS The mechanical pain threshold decreased specifically in the ipsilateral plantar in animals with scar. This state was maintained for 12 weeks. A collagen layer developed from fibers derma to the muscular layer in the scar tissue in which many fibroblasts were observed. No statistical differences were found for the areas of the c-Fos-immunoreactive (c-Fos-IR) neurons in the ipsilateral and contralateral sides of the L5 level of the dorsal horn in both the Scar group and Pinhole (sham operation) group. However, myelin sheath fragmentation of the nerve fibers was observed in the ipsilateral dorsal root at the L5 position. CONCLUSIONS We created a persistent painful scar model through extensive injury of the peripheral tissues. Fibrotic thickening of the cutaneous tissues, possible sensitization, and partial degradation of the spinal nerve related to the painful scar were observed. This model should enable us to better understand the mechanism of sensitization caused by painful scar and investigate new methods for treating painful scars in humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison and Evaluation of Current Animal Models for Perineural Scar Formation in Rat

  Objective (s): Scar formation in injured peripheral nerve bed causes several consequences which impede the process of nerve regeneration. Several animal models are used for scar induction in preclinical studies which target prevention and/or suppression of perineural scar. This study evaluates the translational capacity of four of physical injury models to induce scar formation aro...

متن کامل

P119: Animal Models of Epilepsy: The Impact of some Chemoconvalsants on Animal Models

We summarize some of the most frequenthly used rodent animal models of temporal lobe epileps and the impact of chemoconvulsants on them. Temporal lobe epilepsy is the most common epilepsy in humans in which seizures spread to the neighboring cortiase and hippocampal neuron loss and other neuropathological take place. Temporal lobe epilepsy and the other form of epilepsy cannot acquired in chini...

متن کامل

Neuropathological Changes in Brain Cortex and Hippocampus in a Rat Model of Alzheimer’s Disease

Background: Alzheimer’s disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Methods: Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned t...

متن کامل

Striatal dopamine levels and changes in mitochondrial function following chronic 3-nitropropionic acid treatment in rats

An irreversible inhibitor of complex II in the mitochondria, 3-nitropropionic acid (3-NP), induces bilateral striatal lesions with many neuropathological features of Huntington’s disease (HD) in rats. It is widely used as a model of HD. Chronic systemic treatment of 3-NP for 4 days in rats (10, 15 and 20 mg/kg) caused a significant dose-dependent reduction in succinate dehydrogenase activity, w...

متن کامل

Striatal dopamine levels and changes in mitochondrial function following chronic 3-nitropropionic acid treatment in rats

An irreversible inhibitor of complex II in the mitochondria, 3-nitropropionic acid (3-NP), induces bilateral striatal lesions with many neuropathological features of Huntington’s disease (HD) in rats. It is widely used as a model of HD. Chronic systemic treatment of 3-NP for 4 days in rats (10, 15 and 20 mg/kg) caused a significant dose-dependent reduction in succinate dehydrogenase activity, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2013